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In this work we present a model for the propagation of culture on networks of different topology and by
considering different underlying dynamics. We extend a previous model proposed by Axelrod by letting a
majority govern the dynamics of changes. This in turn allows us to define a Lyapunov functional for the
system.
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INTRODUCTION

Over the last few years it has been possible to witness the
increasing interest in mathematical models aimed to describe
and analyze social processes. A fruitful symbiosis took place,
establishing collaborations among researchers from the so-
cial sciences and physics as well as mathematics. The pro-
cess gave birth to an interesting collection of works dealing
with a wide spectra of social phenomena thus analyzed
through a variety of mathematical and physical techniques
�1–3�.

Some important and primordial questions constitute the
motivation to work on these models. First, it is important to
know how the behavior of unorganized individuals within a
society contributes to produce collective social phenomena.
Next, it is necessary to know how stable this emergent phe-
nomena are. Another important aspect is knowing to what
level social organization is encoded within the topology of
the system, or what is the extent of the effect of the social
structure on the particular characteristics of the evolution of
a given social scenario. A preponderant role in relation with
this aspect has been played by works on social or complex
networks.

Proposing different social networks as schemes for the
underlying architecture of the society, many authors have
presented models to describe opinion formation �1,4�, rumors
�5�, diseases �6,7�, fashion propagation �8,9�, urban segrega-
tion �10�, majority vote �11�, etc. In this work we will ana-
lyze a generalization of a model of culture propagation in-
troduced by Axelrod �3,12�. In the original model, the
cultural background of an individual is characterized by a set
of F dynamical attributes or cultural features that evolve ac-
cording interactions with the social environment. Each fea-
ture, in turn, can take q different values, representing pos-
sible traits. The individuals are located on top of a regular
network and interact with their neighbors. Through this in-
teraction the cultural profile of each individual, and thus the
configuration of the system, evolve. The interaction is medi-
ated by what is called cultural affinity. The more similar an
individual is to one of its neighbors, the more likely the
interaction is. The later consists in the adoption of a common
trait in one of the F cultural aspects. Typically, the system
evolves towards a monocultural state, but for some param-
eter values it freezes in a multicultural state with coexisting
spatial domains of different cultures. The number of these
domains is taken as a measure of cultural diversity.

A systematic analysis of the dependence on q of the origi-
nal model was carried out in Ref. �13�. Further analysis of
the model and of the role of noise was perform in Refs.
�14,15�. In this work we have modified the original formula-
tion, allowing for a wider and more thorough evaluation of
the cultural environment that surrounds each individual and
thus influences on its cultural tendencies. Similar consider-
ations have been made in Refs. �16,17�. Each individual will
evaluate whether or not to copy one of the traits adopted by
one of its neighbors, basing the decision on an observation of
the state of its entire neighborhood. A sort of majority rule
will govern the dynamics of the system. We propose different
forms for this majority rule. In each case, a function of the
state of the system that behaves monotonically in time is
found. This function can be associated with a Lyapunov
function of the system. The idea of defining a Lyapunov
potential in the Axelrod’s model was recently reviewed in
Ref. �18�. The monocultural state is always the absolute
minimum of this function, though there exist some local
minima, corresponding to multicultural situations where the
system remains frozen. The proposed scheme of interaction
among individuals mimics a social situation in a way that
approaches more to the real interactions within the cultural
broth. At the same time, the introduced changes allow the
system to reach a situation of nonfrozen macroscopical
steady state. The system is dynamical, the cultural profiles of
the individuals evolve and change only driven by their inter-
actions, without the addition of external noise, while the sys-
tem preserves some macroscopic properties such as the de-
gree of multiculturality. Other interested models on cultural
evolution have been presented in Refs. �19,20�. The men-
tioned works analyze under what circumstances the cultural
diversity arises and survives despite the homogenizing inter-
action. In Ref. �21�, the authors are rather interested in the
emergence of a coherent culture in an heterogeneous inter-
acting population.

THE MODEL

Our work is based on a previous model by Axelrod �3,12�.
We consider that the cultural background of any individual
can be characterized, in a quite reductionist way, by a given
set of nonoverlapping features. We will call F the number of
these features �k that define the culture in a schematic way.
In principle, each feature can be associated to a different
aspect of the culture such as spoken language, preferred
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foods, or musical style, readings, sports, etc. In turn, a fur-
ther subclassification of each feature into categories will
serve to denote the different preferences or traits. The sim-
plest consideration to achieve such subdivision is to consider
that any cultural feature may take on any of q different val-
ues, the same for any �k. In principle the values are only
labels, so despite the fact that we use numbers for the clas-
sification, any set of symbols would work as well. Thus, an
individual i is culturally characterized by a cultural vector of
F components �k

i , each one adopting values ranging between
1 and q. The way to culturally compare two individuals i and
j is to measure their cultural overlap, ��i,j� as follows:

��i,j� = �
k=1

F

��k
i �k

j . �1�

The individuals are situated on the vertices of a graph.
Two of them are neighbors when linked by an edge. In the
original model, the underlying network was a bidimensional
regular lattice �12�. The topology of the network was later
generalized in �14�, considering amongst others, small world
�SW� networks �2�. Here, we also consider SW networks.

As the individuals interact with the set of their neighbors,
it is useful to define at this point the local overlap of a given
individual �i as

�i = �
j��i

��i,j�, �2�

where �i is the set of neighbors of i. We will also define the
quadratic local overlap as

�i = �
j��i

��i,j�
2 . �3�

Starting from an initial distribution of cultural vectors, the
individuals evolve by analyzing and interacting with their
environment, adapting their cultural preferences according to
the tendencies of the neighborhood. The original numerical
simulations proceed as follows in Refs. �12,14,15�. At time
step t, a randomly chosen individual i and one of its neigh-
bors j are evaluated. Their cultural overlap is calculated to
decide whether they will interact or not. The interaction takes
place with a probability ��i,j��t� /F, in which case one of the
features �k

i such that �k
i ��k

j is set equal to �k
j . Though it is

evident that ��i,j��t����i,j��t−1�, the interaction may affect
as well the overlaps between i and the rest of the neighbor-
hood and thus the change on �i cannot be anticipated.

Interesting results were obtained in Ref. �15� by consid-
ering the whole process of cultural dissemination as an opti-
mization problem. In that work, by analyzing a one dimen-
sional system with interaction amongst the first neighbors,
the authors found a Lyapúnov potential that allowed them to
analyze the stability of the states at which the system re-
mained frozen after some evolution time. We are interested
in extending those results to more general situations, namely,
SW and other complex networks. The global overlap

� =
1

2�
i

�i �4�

cannot be claimed to have a monotonic behavior when the
system, as defined, evolves in time. Suppose that as a result
of the interaction between i and j at time t there is a change
in the value of �k

i . We will call �i
m the neighborhood of i

such that for any of the � individuals hm��i
m, �k

hm�t�
=�k

i �t�; and �i
n the set of 	 neighbors hn such that �k

hn�t�
=�k

i �t+1�. The rest of the neighbors will be included in the
set �i

l. If at each time step only one change is allowed, we
can calculate 
�=��t+1�−��t�= ��i�t+1�−�i�t�� by con-
sidering that

�i�t + 1� = �
j��i

l

���i,j��t�� + �
j��i

m

���i,j��t� − 1�

+ �
j��i

n

���i,j��t� + 1�

= �
j��i

���i,j��t�� − �
j��i

m

1 + �
j��i

n

1. �5�

Thus

�i�t + 1� = �i�t� + 	 − � . �6�

The change in � is thus 
�=	−�, which is not necessarily
equal or greater than zero. By introducing a modification in
the dynamics of the original model we can assure that this
condition will be fulfilled and thus can think of a Lyapunov
functional for the system.

We will consider different types of dynamics, each one
associated with a corresponding Lyapunov function but at
the same time with a clear social interpretation of the behav-
ior of the individuals. The underlying network will be built
up following the procedure described in Ref. �22�. In the
original model of SW networks, a single parameter p, run-
ning from 0 to 1, characterizes the degree of disorder of the
network, respectively, ranging from a regular lattice to a
completely random graph. The construction of these net-
works starts from a regular, one-dimensional, periodic lattice
of N elements linked to 2K nearest neighbors. Then each of
the sites is visited, rewiring K of its links with probability p.
Values of p within the interval �0,1� produce a continuous
spectrum of small world networks.

CULTURAL EXCHANGE DYNAMICS

Case 1: Restricted cultural affinity

The original model proposed by Axelrod considered a
very special case of biased dynamics for the interactions of
the individuals. Despite the fact that individuals are im-
mersed in their neighborhood, this was ignored by requiring
that the individual interact with only one of its neighbors.
Taking this fact into account, a first adaptation of the original
model consists in deciding whether to change or not the
value of the chosen feature by weighting the decision with a
further evaluation of the influence of the neighborhood.
Given that the individual i interacts with j, the possibility of
adopting �k

j for �k
i will depend on the result of an evaluation
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following a sort of majority rule. If by accepting the change
of the value of �k

i i will share the value taken by �k
i with a

bigger group than if by rejecting the change, then i accepts
the change. With a probability 1/2 the change is accepted in
case of equality. This is translated into the following situa-
tion. The change is accepted whenever 	��, and with prob-
ability 1/2 when 	=�. Under this condition, ��t+1�−��t�
�0. So, we will take £1�t�=−��t� as the Lyapunov function
of this dynamics, and the system will evolve to reach a local
or absolute minimum.

Case 2: Complete cultural affinity

The former rule assures that the global cultural back-
ground grows or at least is maintained constant, while the
individuals knows that accepting the change will warrant be-
ing in a bigger group regarding the changing feature. But
basing the decision of the individual on the comparison of
only one feature seems quite myopic. We can propose an-
other condition, making the individual base the decision on a
further evaluation of the local partial overlaps �i

m

=� j��i
m��i,j� and �i

n=� j��i
n��i,j�. Despite that one feature

was chosen to be changed, the individual decides whether to
adopt the new value or not by weighting the whole cultural
overlap with its neighborhood and not by analyzing what
happens with the specific feature to be changed. This is
equivalent to saying that the individual will favor a majority
weighted by deeper cultural affinity. Now, we can no longer
say that ��t+1�−��t��0. We must look for another quan-
tity £2�t�, such that £2�t+1�−£2�t��0. In what follows we
show that £�t�2=−���t�+��t��, with ��t�= 1

2�i�i�t�, satis-
fies the required condition.

Let us consider that in the proposed interaction between i
and j, �k

i will be change by �k
j . There are three classes of

individuals among the neighbors of i, those belonging to �i
m,

those belonging to �i
n and the rest, that will be grouped in �i

l.
The local partial overlap �i

l=� j��i
l��i,j� will no be affected,

regardless of whether or not the interaction takes place. On
the contrary, if the interaction occurs at time t, �i

m�t+1�
=�i

m�t�−�, and �i
n�t+1�=�i

n�t�+	.
If no interaction is allowed, £2�t+1�=£2�t�. If on the con-

trary, the change is accepted, we have

£2�t + 1� − £2�t� = ��i�t + 1� − �i�t�� + ��i�t + 1� − �i�t�� .

We can expand the right-hand side of the former equation by
considering sums over �i

m, �i
n, and �i

l. On one side we have

�i�t + 1� = �
j��i

l

���i,j��t��2 + �
j��i

m

���i,j��t� − 1�2

+ �
j��i

n

���i,j��t� + 1�2

= �
j��i

���i,j��t��2 + �
j��i

m

1 − 2��i,j��t�

+ �
j��i

n

1 + 2��i,j��t� . �7�

Expanding and regrouping terms we get

�i�t + 1� = �i�t� + �i
n�t + 1� − �i

m�t + 1� + �i
n�t� − �i

m�t� ,

=�i�t� + 2��i
n�t + 1� − �i

m�t�� + � − 	 .

On the other hand, we have Eq. �2�. Finally

£2�t + 1� − £2�t� = − �2��i
n�t + 1� − �i

m�t��� .

The condition to be fulfilled is

�i
n�t + 1� − �i

m�t� � 0

that corresponds to the imposed constraint.
It is important to note that in all the cases, the monocul-

tural state corresponds to minimum value of the Lyapunov
function £i

M. We can use this value for normalization, such
that Li=£i /£i

M.

NUMERICAL RESULTS

In what follows we will include results corresponding to
the cases 1 and 2 as well as those corresponding to the Ax-
elrod’ s original model, for which we have not defined a
Lyapunov function. We have performed extensive numerical
simulations of the described model, considering different dy-
namics. The networks have N=104 vertices and connectivity
K=2. A typical realization starts with the generation of the
random network and the initialization of the state of the el-
ements. After a transient period, the duration of which de-
pends on the parameters of the particular simulation, a mac-
roscopic stationary state is achieved. The computations are
then repeated for several thousand time steps to perform sta-
tistical averages. We consider that the system has achieved a
macroscopic stationary state when the corresponding
Lyapunov function of the systems reaches a stationary value.
We will see that this does not imply that the system is steady
in a particular microscopical state. Indeed, the configuration
of the system fluctuates among states associated to equal
values of the Lyapunov function. There are several aspects
characterizing the asymptotic evolution of the system to a
stationary value of the Lyapunov function. We also analyze
the behavior of the system when governed by the original
dynamics, in which case the steady state is not characterized
by a Lyapunov function and achieves a microscopically fro-
zen state.

In all the calculations, we took F=10 and several values
of q, ranging from 2 to 80. At each time step only one change
was allowed, the system was updated asynchronically. We
considered that one unity of time corresponded to N time
steps.

For each of the dynamics described above, we have ana-
lyzed several aspects of the evolution of the system. First we
have calculated the proportion of overlaps  between indi-
viduals corresponding to three cases, �a� 0 when ��i,j�=0,
�b� F when ��i,j�=F, and �c� a when 0���i,j��F. Cases
�a� and �b� correspond to the situation when no change in the
system is possible because the interaction of two individuals:
in case �a� because no interaction will occur when the cul-
tural overlap is equal to zero, in the case �b� because indi-
viduals are already culturally identical. The only active links
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are those corresponding to case �c�. Then we have calculated
the corresponding Lyapunov function �when defined� to
show how its value evolves monotonically to a steady one.
Though this does not provide any information about the in-
ner structure of the system, or about the existence of clusters,
it helps us to have an idea of the amount of cultural differ-
entiation that is present. To show that though the Lyapunov
function reaches a steady value, but the system is not in a
steady state, we calculated the amount of changes that occur
in each time step. This was also useful to show that in the
Axelrod case, the system attained a frozen state, with no
changes.

Axelrod’s case

This case corresponds to the original model �12,14,15�
where individuals interact with only one of their neighbors at
each time step. The interaction is mediated by the cultural
affinity, defined through the cultural overlap ��i,j�. The stron-
ger the affinity is, the greater the possibility of interaction
between two subjects. In the present work, the individuals
are located on networks with different degrees of disorder.
The ordered case p=0, corresponds to a one-dimensional
lattice with interactions between the first and second neigh-
bors.

As stated before, we did not find a Lyapunov function for
this case, and we restrict the displayed results to the time
dependence of the proportion of overlaps F and a, and of
the proportion of changes in the individuals’ cultural profiles.
We recall that 0=1− �F+a�. Figure 1 displays the time
evolution, averaged over 1000 realizations, of the values F
and a, corresponding to the amount of overlaps ��i,j�=F and
0���i,j��F, normalized to the total number of links KN. We
evaluate these quantities on networks with different degree
of disorder, namely, p=0,0.01,0.5,0.9.

A deeper insight into what is happening is obtained by
analyzing the data contained in Fig. 2. There we show the
proportion of changes in the cultural vectors of the individu-

als. Each change corresponds to a component of any cultural
vector that changed its value. We show the amount of
changes in a unit of time normalized to the maximum value
allowed N, the number of proposed changes.

Figures 1�a� and 2�a� correspond to an ordered underlying
network. The system goes to a state where only non active
links survive, that is, a→0. At the same time, while the
system reaches a steady state, associated with the number of
changes approaching 0, the system achieves a monocultural
state when q�F but goes to a multicultural state for higher
values of q.

When some disorder is introduced into the network, the
behavior of the system is more complex. By looking at Fig.
2 we can see that there are two different behaviors for or-
dered and very disordered networks while the intermediate
case, p=0.01 shows a mixture of both. The system, in or-
dered networks evolves rather fast to a state of low multicul-
turality or monoculturality. When the disorder is increased,
the initial disorder survives for longer times. At the end, the
system ends in a monocultural state except when p=0 and
q�F. Figure 1, showing the number of changes in time con-
firms what was mentioned before. We have not observed
sharp transitions while varying the p value, indeed, the be-
havior of the system undergoes a smooth change as the spa-
tial disorder is increased.

Case 1: Restricted cultural affinity

In the following cases the calculation of the Lyapunov
function will provide us additional information about the
system behavior. As in the previous case, Fig. 3 displays the
time evolution, averaged over 1000 realizations, of the val-
ues F and a, evaluating these quantities on networks of
varying disorder. Figure 5 shows the evolution in time of the
proportion of changes. The evolution of the normalized
Lyapunov function corresponding to this case, L1 is plotted
in Fig. 4. Starting from the ordered case, Fig. 3�a�, we ob-
serve that results do not differ so much from what we have
previously seen. Again, the system goes to a state where only
non active links survive, reaching a steady state, and achiev-

FIG. 1. Proportion of active links a and of complete overlap
links F vs time, with q=2 �full�, q=5 �dashed�, q=10 �dotted�, q
=15 �dotted-dashed�. Each plot correspond to a different value of p:
�A� p=0, �B� p=0.01, �C� p=0.5, �D� p=0.9. Axelrod’s case.

FIG. 2. Proportion of changes vs time, for different values of q
and p as in Fig. 1. Axelrod’s case.
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ing monoculturality when q�F and a certain degree of mul-
ticulturality for higher values of q.

This time we can recur to the Lyapunov function to see
that the absolute minimum is reached when q�F, but the
system remains in a frozen state of multiculturality when q
�F. It is interesting to observe that the number of changes,
Fig. 5�a�, goes to zero.

When disorder is included on the network, the behavior of
the system displays nontrivial effects as can be can observed
in Figs. 3�b�–3�d�. The number of active links is different
from zero, even when a steady value for the Lyapunov func-
tion is reached. Though the monocultural state is the absolute
minimum, it is note attained by the system, who finishes
trapped in local minimum. In Figs. 4�b�–4�d� we observe that
the Lyapunov function decreases monotonically to attain a
steady state but not to the absolute minimum. On the other
hand, the steady values depend non monotonically on the
disorder of the network. Despite the fact that £1 remains
steady, the state of the system is not frozen. This affirmation
comes from the observation of Fig. 5, where we find that the

number of changes remains above zero in all cases. Again,
the mean value of changes behaves in a nontrivial way when
q or p change.

Perhaps the most interesting feature is the interplay be-
tween the effect of the spatial disorder and the values of q.
This can be better observed by analyzing the behavior of the
Lyapunov function. In some cases the disorder introduced by
the network prevents the system from achieving the previ-
ously reached monocultural state, but on the other hand, the
final degree of multiculturality depends in a very interesting
way from both parameters. An interesting nonmonotonic be-
havior of L1 in terms of p can be observed depicted in Fig. 6.

Case 2: Complete cultural affinity

The first aspect that we can observe for this case is that
independently of the degree of disorder of the network, the
state of monoculturality is never achieved, as shown in Fig.
7. We can again verify the interplay between the parameters
q and p and their effect on the behavior of the system. An-

FIG. 3. Proportion of active links a and of complete overlap
links F vs time, for different values of q and p as in Fig. 1. Case 1.

FIG. 4. Normalized Lyapunov function L1 vs time, for different
values of q and p as in Fig. 1.

FIG. 5. Proportion of changes vs time, for different values of q
and p as in Fig. 1. Case 1.

FIG. 6. Steady value of −L1 vs p, with q=2 �full�, q=5
�dashed�, q=10 �dotted�, q=15 �dotted-dashed�.
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other issue to be observed is the time scale. The evolution
towards a steady value of the Lyapunov function is much
faster than before, as observed in Fig. 8. At the same time we
observe that by increasing the disorder the amount of active
links grows.

This is associated to the fact observed in Fig. 9, where we
can see how the amount of changes in the final state also
increases with p. The behavior of the Lyapunov function
simply verifies that the system reaches a steady value and
that this value is far from being the absolute minimum. In all
the cases, the steady value decreases with q.

CONCLUSIONS

Axelrod’s model shows how a microscopical local pro-
cess of interaction, leading to convergence provokes the
emergence of global polarization. In previous works, the
model was used to analyze the effect of the number of cul-
tural aspects and traits on the steady configuration of the

system. Further analysis �13� of the relative size of the larg-
est cultural domain revealed an order disorder transition with
q, the number of different traits, playing the role of the con-
trol parameter. Under a threshold value qc�F�, the system
converges to a monocultural uniform state. Above qc�F� the
system freezes in a multicultural state, that can be associated
to polarization. The stability of the multicultural states was
analyzed in Ref. �14� by perturbing the system when frozen
in a multicultural state and showing the further convergence
to the monocultural state. Perturbations were associated to
cultural drift.

In this work we proposed a different sort of generalization
of Axelrod’ s model. We modified the model to include in-
teractions among several individuals within a neighborhood

FIG. 7. Proportion of active links a and of complete overlap
links F vs time, for different values of q and p as in Fig. 1. Case 3.

FIG. 8. Normalized Lyapunov function L2 vs time, for different
values of q and p as in Fig. 1.

FIG. 9. Proportion of changes vs time, for different values of q
and p as in Fig. 1. Case 2.

FIG. 10. Asymptotic proportion of inactive links 0 �solid� and
F �dashed� for different values of q. With bold line: p=0.9 and thin
line p=0, solid line. �a� Case 1, �b� case 2.
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or to let each individual evaluate the changes in its cultural
preferences by analyzing those of its neighbors. The cultural
influence of the environment was already studied in Ref.
�16�.

Different ways of considering this extended interaction
were shown. For each, an associated Lyapunov function was
found, letting us analyze the convergence of the system to-
wards an absolute or local minima. The disorder of the sys-
tem was not reduced to that introduced by the initial condi-
tion by increasing the value of q, but also included in the
spatial distribution of the agents. For this purpose we ana-
lyzed the effect of the disorder of the underlying network
considering small world networks of varying disorder. The
results linked to this aspects can be compared with previous
results and thus unveil the effect of the newly defined inter-
action of each individual with the whole neighborhood. As
already known, increasing the value of q leads the system to
undergo a transition from monoculturality to multiculturality.
However, when the dynamics of the system corresponds to
the case 1, the effect of spatial disorder attempts against this
effect. Figure 10 shows the asymptotic values of 0, a, and
F for different values of q and dynamics. Figure 10�a� cor-
responding to the case 1 and Fig. 10�b� to the case 2. In Fig.
10�a� it is possible to observe the transition from monocul-

turality to multiculturality at different values of q. This can
be explain by recalling that in a disordered network the clus-
terization of the system is lower and thus, the existence of
clusters of culture reflected in a polarized situation is no
longer achieved. When the slightest disorder is added to the
network, the number of links with overlap equal to zero de-
cays. In case 2, the transition to the multicultural state occurs
at lower values of q when compared with previous results. It
is important to recall that multiculturality presents here a
different character. The change of the rules of interaction
introduces a new interesting behavior. Not only does the
amount of active links not go to zero, with the exception
when the underlying lattice is ordered and q=2, but also the
system reaches a situation when the Lyapunov function
adopts a steady value but the system is not frozen. The con-
figuration of the system changes in time, as can be observed
from the figures displaying the number of changes in time.

The results presented here complement what was already
found in the analysis of the model first proposed by Axelrod.
The interesting feature is that the system, despite reaching a
steady situation, does not remains static. Some aspects still
deserve further analysis. Among them we will consider in a
future work the inclusion of noise.
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